
Protocol Misidentification Made Easy with

Format-Transforming
Encryption

Kevin Dyer, Portland State University
Scott Coull, RedJack���
Thomas Ristenpart, University of Wisconsin-Madison
Thomas Shrimpton, Portland State University

(did most of the hard work)

OpenNet Initiative (ONI),
Reporters Without Borders
(via wikipedia; updated Jan 6, 2014)

Magenta-colored countries are “internet black holes”:
have heavy censorship of political, social, and news sites,
internet tools, etc.

Current Estimates of Internet Censorship

Discriminatory policies enabled by
packet filtering

Nation-state level
packet filter

IP info TCP info

payload

“HTTP: … free+speech …”

A packet can tell you:
•  source address
•  destination address/port
•  application-level protocols
•  keywords in payloads
•  …

…

Tools exist to obfuscate “shallow” information

IP info TCP info

payload

“HTTP: … free+speech …”

Use a proxy service,
e.g.

A packet can tell you:
•  source address
•  destination address/port
•  application-level protocols
•  keywords in payloads
•  …

…

Modern filters look deeper into the packet:
Deep Packet Inspection (DPI)

IP info TCP info

payload

“HTTP: … free+speech …”

Making payload information
unhelpful is the new challenge

A packet can tell you:
•  source address
•  destination address/port
•  application-level protocols
•  keywords in payloads
•  …

…

IP info TCP info “TLS…” ??? … ???

Hides the protocol inside
the encrypted tunnel...

Why not just use an encrypted tunnel?
(TLS, SSH, VPNs,)

…

IP info TCP info “TLS…” ??? … ???

Hides the protocol inside
the encrypted tunnel...

But use of the
encryption protocol
is still visible.

Why not just use an encrypted tunnel?
(TLS, SSH, VPNs,)

…

IP info TCP info ???

Why not make the whole payload look random?
(e.g. with a stream cipher)
(e.g. Tor’s “obfs” pluggable transport)

…

IP info TCP info ???

Why not make the whole payload look random?
(e.g. with a stream cipher)
(e.g. Tor’s “obfs” pluggable transport)

“I don’t recognize this as
any legitimate protocol.”

What happens if DPI allows
only whitelisted protocols?

3. Not empirically validated: do they work against real DPI?

1. Poor performance: 16-256Kbps reported (best case)

Stegotorus [Weinberg et al., 2012],

SkypeMorph [Moghaddam et al. 2012],

FreeWave [Houmansadr et al., 2013], etc.

e.g. what if you’re using SkypeMorph,
and Skype becomes blocked? (Ethiopia 2013)

These represent nice steps in the right direction, but

2. Inflexible: not quickly adaptable to changes in DPI rules.

Recent efforts in DPI Circumvention

Our goal: to cause real DPI systems
to reliably misclassify our traffic

“This is an benign
FTP message.
Let it pass.”

crypto
magic

“HTTP: … free+speech …”

TCP/IP ciphertext

for example: HTTP misclassified as FTP

(and in a way that is flexible and has good throughput/low latency…)

crypto
magic

“HTTP: … free+speech …”

TCP/IP ciphertext

Our goal: to cause real DPI systems
to reliably misclassify our traffic
as whatever protocol we want.

(and in a way that is flexible and has good throughput/low latency…)

To this end, we:

Introduce a new cryptographic tool, Format Transforming Encryption

Implement an FTE-powered proxy system

Empirically evaluate FTE against real DPI in the lab

Report on some live “field tests”

Characterize how real DPI systems make classification decisions

14

crypto
magic

key

plaintext
a ciphertext string

that DPI will classify
as protocol X

15

crypto
magic

key

plaintext
{ strings that DPI will

classify as protocol X }

a ciphertext string
that DPI will classify

as protocol X

We took inspiration from Format-Preserving Encryption
 [Bellare et al., 2009]

The desired ciphertext “format”

16

FTE
key

plaintext
{ strings that DPI will

classify as protocol X }

a ciphertext string
that DPI will classify

as protocol X

Format-Transforming Encryption

Like traditional encryption, with the extra
operational requirement that ciphertexts fall
within the format.

17

FTE
key

plaintext

Ciphertext flexibility is built into the FTE syntax

{ strings that DPI’ will
classify as protocol X }

a ciphertext string
that DPI’ will classify

as protocol X

Conceptually, adapting to new DPI rules
requires changing only the format

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

“This is an _____ message.”

System Classification Tool Price

appid free

l7-filter free

YAF free

bro free

nProbe ~300 Euros

DPI-X ~$10K

Enterprise grade DPI, well-known company

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

“This is an _____ message.”

Regular languages/expressions
figure heavily in state-of-the-art
DPI classification tools

System Classification Tool Price

appid Regular expressions free

l7-filter Regular expressions free

YAF
Regular expressions
(sometimes hierarchical)

free

bro
Simple regular expression triage,

then additional parsing and heuristics
free

nProbe Parsing and heuristics (many of them “regular”) ~300 Euros

DPI-X ??? ~$10K

FTE
key

plaintext a string in L(R)
regex R

Regular-expression-based FTE

Whence the regex?

If the DPI is open source (appid, l7-filter, YAF), extract them!

Build them manually, using RFCs and (when possible) DPI source code.

Learn them from traffic that was allowed by the DPI.

21

key

plaintext ciphertext in L(R)

regex R

How should we realize regex-based FTE?

We want:
Cryptographic protection for the plaintext

Ciphertexts in L(R)

Realizing regex-based FTE

22

key

plaintext ciphertext in L(R)

regex R

Realizing regex-based FTE

authenticated
encryption

How should we realize regex-based FTE?

We want:
Cryptographic protection for the plaintext

Ciphertexts in L(R)

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1 i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

Given a DFA for L(R), there are efficient algorithms

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1 i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

rank(xi)=i

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

Given a DFA for L(R), there are efficient algorithms

rank: L(R) {0,1,…,|L(R)|-1}

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1 i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

x2

rank(xi)=i

unrank(2)=x2

With precomputed tables,
rank, unrank are O(n)

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

rank: L(R) {0,1,…,|L(R)|-1}
unrank: {0,1,…,|L(R)|-1} L(R)

such that rank(unrank(i)) = i
 and unrank(rank(xi)) = xi

Given a DFA for L(R), there are efficient algorithms

key

plaintext ciphertext in L(R)

regex R

Realizing regex-based FTE

authenticated
encryption

unrank

regex-to-DFA

Intermediate ciphertext,
interpreted as an integer n…

[integer]

[DFA]

…outputs nth string in
lexicographic ordering
of L(R)

FTE engineering challenge: large plaintexts

|L(R)| bounds length
of longest plaintext

key

plaintext ciphertext in L(R)

regex R

authenticated
encryption

unrank

regex-to-DFA

[integer]

[DFA]

Using very large languages leads to:
 large tables – naively, (#DFA states) x (length of longest plaintext)
 latency issues – waiting for long plaintext to buffer

Chunking, and using unrank(C1), unrank(C2), unrank(C3), leads to:
 receiver-side parsing issues – how to affect the commas?

Use case: Browsing the web through an FTE tunnel

Rtarget
FTE client FTE proxy

Rtarget

Internet

Generating
HTTP(S), DNS
messages

FTE ciphertexts

HTTP, SSH, SMB

FTE “wins” if the DPI classifies the stream it sees
as the target protocol

Use case: Browsing the web through an FTE tunnel

Rtarget
FTE client FTE proxy

Rtarget

Internet

Generating
HTTP(S), DNS
messages

FTE “wins” if the DPI classifies the stream it sees
as the target protocol

FTE ciphertexts

HTTP, SSH, SMB

Using each “target” format, we visited each of the Alexa Top 50 websites five times.

We recorded the fraction of times that FTE won, as well as performance data.

Misclassification rates with extracted regex

appid l7-filter YAF DPI-X

appid-http

l7-http

yaf-http1
yaf-http2

appid-ssh

l7-ssh

yaf-ssh1
yaf-ssh2

appid-smb

l7-smb

yaf-smb1
yaf-smb2

regex

DPI

appid l7-filter YAF DPI-X

appid-http 1.0 0.0 1.0 1.0

l7-http 0.0 1.0 0.16 1.0

yaf-http1
yaf-http2

0.0
0.0

0.0
0.0

1.0
1.0

1.0
1.0

appid-ssh 1.0 0.32 1.0 1.0

l7-ssh 0.16 1.0 0.16 1.0

yaf-ssh1
yaf-ssh2

1.0
1.0

0.21
0.31

1.0
1.0

1.0
1.0

appid-smb 1.0 1.0 1.0 1.0

l7-smb 0.0 1.0 0.38 1.0

yaf-smb1
yaf-smb2

0.0
0.0

0.04
0.04

1.0
1.0

1.0
1.0

regex

DPI

Misclassification rates with extracted regex

appid l7-filter YAF DPI-X

appid-http 1.0 0.0 1.0 1.0

l7-http 0.0 1.0 0.16 1.0

yaf-http1
yaf-http2

0.0
0.0

0.0
0.0

1.0
1.0

1.0
1.0

appid-ssh 1.0 0.32 1.0 1.0

l7-ssh 0.16 1.0 0.16 1.0

yaf-ssh1
yaf-ssh2

1.0
1.0

0.21
0.31

1.0
1.0

1.0
1.0

appid-smb 1.0 1.0 1.0 1.0

l7-smb 0.0 1.0 0.38 1.0

yaf-smb1
yaf-smb2

0.0
0.0

0.04
0.04

1.0
1.0

1.0
1.0

regex

DPI

Since these all have 1.0 on the diagonals,
we made “intersection” regexs for HTTP, SSH, SMB,
and got 1.0 everywhere

Misclassification rates with extracted regex

appid l7-filter YAF DPI-X

appid-http 1.0 0.0 1.0 1.0
l7-http 0.0 1.0 0.16 1.0

yaf-http1
yaf-http2

0.0
0.0

0.0
0.0

1.0
1.0

1.0
1.0

appid-ssh 1.0 0.32 1.0 1.0
l7-ssh 0.16 1.0 0.16 1.0

yaf-ssh1
yaf-ssh2

1.0
1.0

0.21
0.31

1.0
1.0

1.0
1.0

appid-smb 1.0 1.0 1.0 1.0
l7-smb 0.0 1.0 0.38 1.0

yaf-smb1
yaf-smb2

0.0
0.0

0.04
0.04

1.0
1.0

1.0
1.0

regex

DPI

!

Misclassification rates with extracted regex

appid l7-filter YAF DPI-X bro nProbe

manual-http

manual-ssh

manual-smb

learned-http

learned-ssh

learned-smb

regex

DPI

Misclassification rates with manual/learned regex

Learned (via simple technique) from traffic that
was allowed by the DPI.

Built manually, using RFCs and
(when possible) DPI source code.

appid l7-filter YAF DPI-X bro nProbe

manual-http

manual-ssh

manual-smb

learned-http

learned-ssh 0.0

learned-smb

regex

DPI

1.0
(except this, which we
explain in the paper)

Misclassification rates with manual/learned regex

Rtarget
FTE client

input protocol
stream

FTE proxy

input protocol
stream

Rtarget

Punchline: regex-based FTE can make
real DPI say whatever we want it to.

“Help!”

Web-browsing performance

Punchline: FTE or SSH tunnel result in the same
user web-browsing experience

A field test…

FTE
client

Internet

FTE
proxy

A field test…

FTE
client

Internet

FTE
proxy

Without FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

With FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

A field test…

FTE
client

Internet

FTE
proxy

Ran various tests every 5 minutes for one month,
no sign of detection in logs. (We shut it down after that.)

Used FTE to download Tor bundle:

Tor without FTE: “active blacklisting” attack on proxy
Tor through FTE: no problems

Without FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

With FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

We even have a nice website:

https://fteproxy.org/

Get it, run it, help us make it better!

FTE is open source,
runs on multiple platforms/OS,
and fully integrated with Tor.

